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Why: The Problem Statement

Many of the highest-performing machine learning models are complex “black boxes.”
Ensembles (Random Forests, Gradient Boosting)

Deep Neural Networks

The Challenge: When a model predicts f(x) =y, how do we know why?
The Goal: We need a rigorous method to explain individual predictions by attributing

the outcome to each input feature.
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Core Concept: Shapley Values

The core idea comes from cooperative game theory (shapleyStochasticGames1953).

Goal: To fairly distribute a total “payout” among a group of collaborating “players.”

The Central Question

How much did each player individually contribute to the final outcome of the team?
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The Machine Learning “Game” Metaphor

We can frame a single model prediction as a game:
The “Game”: Explaining the prediction f(x) for a single instance x.
The “Players”: The feature values of the instance (z1,z2,...,2p).

The “Payout”: The model’s prediction for this instance minus the average
(baseline) prediction over the whole dataset.

Payout = f(x) — E[f(X)]
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Formal Definition: Shapley Value ¢,

The Shapley value ¢; for a feature j is its average marginal contribution, weighted and
summed over all possible coalitions (subsets) .S of features that don't include j.

Shapley Value Definition

Sl(p—1S| —1)!
o5 (val) = 3 1S)!( |' | —1)
SC{1 PN} P

(val(SU{j}) — val(9))

p is the total number of features.
The value function val is the payout function for coalitions of feature values.

val(S) is the “payout” of the coalition S (i.e., the model’s prediction using only
features in S).

Example: One model works with 4 features X1, Xo, X3, X4. The prediction for feature
values in S that are marginalized over features Xy and Xy is

valx(S) = valx({1,3}) = /R/Rf(él?hXQ,fL’s,Xﬂ dPx,x, — E[f(X)].
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The Axioms of a “Fair” Payout

Shapley values are the only attribution method that satisfies three key properties:

Efficiency (Local Accuracy): The sum of all feature contributions (¢;) equals the
total “payout” (the prediction minus the average).

> 5= [(x) —E[f(X)]

Jj=1
Symmetry: If two features j and k contribute identically to all possible coalitions,

their attributions are the same (¢; = ¢y).

Dummy: If a feature j has no impact on the prediction (it contributes 0 to all
coalitions), its attribution is zero (¢; = 0).
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From Shapley Values to SHAP

SHAP (SHapley Additive exPlanations) connects many explanation methods (like LIME)
using Shapley values as a unifying framework.
Key Idea: SHAP defines a new class of “Additive Feature Attribution Methods."
All explanations are based on a simple, linear explanation model g that
approximates the original complex model f for a single prediction.
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Class: Additive Feature Attribution Methods

The explanation model g is a linear function of binary variables z’:
M
9(z') = ¢o + Y ¢;7]
j=1

g(Z'): The explanation for the simplified input z’.

z' € {0,1}M: A binary “coalition vector” representing which features are “present”
(1) or “absent” (0).

¢; € R: The attribution for feature j. This is the SHAP value.

A

¢o: The base value, or E[f(X)].
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The SHAP Properties (The Axioms Re-stated)

SHAP re-frames the Shapley axioms for this explanation model:

Local Accuracy (Efficiency): The explanation model ¢ must match the original
model’s output f(z) when all features are present (i.e., ' is all 1s).

M
fl@) = g(@) = do+)_ &

j=1

Missingness (Dummy): A missing feature (2} = 0) has no attribution (¢; = 0).

Consistency (Symmetry/Additivity): If a model f changes so a feature’s
marginal contribution always increases or stays the same (regardless of other
features), its SHAP value ¢; should not decrease.
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The Unifying Theorem

Theorem 1 (lundbergUnifiedApproachinterpreting2017)

There is only one possible explanation model g (i.e., one set of ¢; values) that satisfies
all three properties (Local Accuracy, Missingness, Consistency).

The unique solution for ¢; is:

)= 3 ERMEEIZ Dy g

2/ Cx!

f=(2") is the prediction of the original model f for the coalition 2’.
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The Statistical Definition: What is f,(2')?

How do we calculate the prediction f,(2’) for a coalition 2’ (e.g., 2} = 1,25 = 0)? We
can't just “remove” xo. We must account for its effect.
SHAP defines f,(z') as the conditional expectation:

fo(2) = E[f(X) | X5 = x]

S'is the set of “present” features (where 2 = 1).
In words: “The expected model prediction, given the values of the features we know
(in S).”
This is the main statistical challenge. Computing this expectation is computationally
very difficult.
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Estimation Methods (How to Compute SHAP)

Exact computation is O(2M), which is infeasible. We need
approximations(molnarinterpretingMachineLearning2023).
KernelSHAP (Model-Agnostic):
A clever, model-agnostic approximation.
Connects SHAP to LIME by using a specific weighted linear regression (the “Shapley
kernel”) to solve for the ¢, values.
TreeSHAP (Model-Specific):
A highly optimized, fast algorithm specifically for tree-based models (Decision Trees,
Random Forests, XGBoost, etc.).
For trees, it can compute the exact SHAP values efficiently.
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Usage: From Local to Global Insights

We can aggregate the local SHAP values ((bf) for all n instances) to get global model
insights.
SHAP Feature Importance: The mean absolute SHAP value for each feature.
This is a more robust importance measure than simple permutation importance.

1 « i
1;=—3"14)]
i=1

SHAP Summary Plot: Combines feature importance with feature effects. It plots
the SHAP value for every feature for every instance, often colored by the feature's
original value.

SHAP Dependence Plot: A scatter plot of a feature's value (z;) vs. its SHAP
value (¢;). This is excellent for revealing interactions.
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Conclusion - Sec 1

SHAP provides a unified theory for feature attributions, connecting many
disparate methods.

It is founded on solid game theory axioms, ensuring explanations are fair and
accurate (Efficiency, Symmetry, Dummy).

It is the only additive method satisfying Local Accuracy, Missingness, and
Consistency.

It provides powerful local (single prediction) and global (model-wide) insights.
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Recap: Generalized Additive Models (GAMs)

A GAM is an extension of a GLM.

Core ldea: It replaces the simple linear term [3;z; with a flexible, non-linear
function f;(x;) for each feature.

Key Property: The model is still additive. The functions are summed together.

GAM Model Formula
JEY[x)] = Bo + fi(z1) + fo(x2) + - + fp(zp)

g is the link function (e.g., logit, log).

f;j is a non-linear “spline” function learned from the data.
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The Key Insight: SHAP on an Additive Model

What happens when we use an additive explanation (SHAP) on an additive model
(GAM)?

The math simplifies.
We don't need complex, model-agnostic approximations (like KernelSHAP).

The SHAP value ¢; for a feature j has an exact, closed-form solution.

The “SHAP-GAM" Connection

For an additive model, the SHAP value for a feature is simply its local function value,
fj(x;), centered by its average function value, E[f;(X})].
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Formal Definition: SHAP for GAMs

Let's assume a simple GAM (identity link g, f(z) = Bo + X fj(x;)):
The Model: f(x) = By + fi(z1) + - + fo(zp)
The Baseline (¢0): ¢o = E[f(X)] =E[Bo + > fij(X;)]

P
do0 = Bo+ Y_E[f;(X;)]

j=1
The SHAP Value (¢;):
¢j(x) = fi(z;) — E[f;(X;)]

This perfectly satisfies the SHAP “Efficiency” (Local Accuracy) property:
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Example: Bike Rental GAM

Use the bike rental example(molnarinterpretingMachineLearning2023).
Goal: Predict ‘rentals’ (count), so we use a Poisson GLM / GAM.
Model: ‘log(E[rentals])’ = 5o + fi(temp) + f2(workday)

For simplicity, ‘workday' is linear, so fa(Zwork) = Bwork * Twork-

We want to explain a single prediction:

Instance z: A hot day (e.g., 35°C) that is a workday.
Prediction f(x): 4000 rentals (example value).

Baseline ¢,: Average prediction is 5500 rentals (example value).
Total Payout to Explain: 4000 — 5500 = —1500 rentals.
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Example: Calculating the SHAP Values

We need to find ¢remp and duworkday that sum to -1500. (Note: SHAP values are on the
scale of the linear predictor, ‘log(rentals)’, but can be transformed back.)
Temperature Contribution ¢iemp

(btemp = f1(35oc) - E[fl (Temp)}
We get f1(35°C) directly from the spline plot for temperature.

High temperatures have a negative effect. Say the centered plot f; is at -0.4 for 35°C.

bremp = —0.4 (in log-count space).

Workday Contribution ¢yorkday
¢workday = f2(]—) - E[f2 (Workday)]
= (ﬁwork : 1) - E[ﬁwork : Xwork]

= Bwork(1 - mean(Xwork))
This is the standard, exact contribution for a linear feature.
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Why Use SHAP on a “White-Box” Model?

If GAMs are already interpretable, what does SHAP add?

Standard GAM Interpretation (Global):
"The model is a sum of functions. Here is the plot for temperature, here is the plot for
workday..."
This is a global view of feature effects.

SHAP Interpretation (Local):
"For this specific prediction, the high temperature contributed -0.4, and the workday
contributed -0.1..."
This is a local view, explaining one decision.

A Unified Currency:
SHAP provides a single “currency” (¢) to compare the magnitude of a complex
non-linear spline effect (e.g., f1(35)) with a simple linear effect (e.g., B2 - 1).
This is extremely powerful for communicating results.
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SHAP Summary by Model Type

Comparison of SHAP Estimation by Model Type

Model Type Package (shap) Speed Exactness
Linear LinearExplainer Instant Exact

GAM AdditiveExplainer Very Fast Exact
XGBoost TreeExplainer Fast Exact

FFNN DeepExplainer Slow Approximate
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Conclusion - Sec 2

SHAP is not just for “black-box" models like deep networks.

When applied to additive models (GLMs, GAMs), SHAP values have an exact,
analytic solution.

¢;i(x) = fi(z;) — E[f;(X;)]

This bridges the gap between traditional global model interpretation (plotting f;)
and modern local explanation methods (attributing ¢;).

It allows us to directly compare the local impact of linear and non-linear
components on a single prediction.
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